Curvature of attached shock waves in steady axially symmetric flow

By E. BIANCO, H. CABANNES and J. KUNTZMANN
Faculties of Sciences of Grenoble and Marseille (France)

(Received 8 July 1959)
An electronic computer has been employed to calculate the ratio between the initial radii of curvature of the attached shock wave and the body for an axially symmetrical body in a uniform supersonic stream. The results are obtained with 4 exact digits for more than 200 cases. They extend results obtained previously (Cabannes 1951) by means of numerical integration.

1. Introduction

We consider a body of revolution placed in a compressible fluid. The fluid possesses at infinity a uniform supersonic velocity \bar{q} parallel to the axis of revolution $O x$. A shock wave is formed in front of the body, and limits the region in

Figure 1. Diagram of the flow field.
which the flow is uniform. Viscosity and thermal conductivity are neglected outside the shock. We suppose that the surface of the body is tangential at the axis of revolution to a cone with semi-angle θ_{s}, and that the angle θ_{s} and the Mach number M of the upstream flow have been chosen in such a way that the shock wave is attached at the vertex O of the obstacle. We locate the position of a point P in a meridian plane by the polar co-ordinates $O P=r$ and $\angle P O x=\theta$ (see figure 1). By means of these co-ordinates, the equation of the obstacle in the neighbourhood of the point O can be written in the form (1) and the equation of the shock wave, in the neighbourhood of the same point, in the form (2), namely,

$$
\begin{align*}
\text { body: } \theta & =\theta_{s}+\frac{r}{2 \mathscr{R}}+\ldots, \tag{1}\\
\text { shock: } \theta & =\theta_{w}+\frac{r}{2 R}+\ldots \tag{2}
\end{align*}
$$

The angle θ_{w} is determined by the theory of axially symmetric flow (Kopal 1947); it depends on the Mach number M and the angle θ_{s}. The object of the present paper is to give tables for the determination of the value of the ratio (R / \mathscr{R}) of the radii of curvature, at the axis of revolution, of the shock wave and the body; this ratio likewise depends on the Mach number M and the angle θ_{s}.

2. Equations of motion

We designate by u and v the components of the fluid velocity at a point P in the directions θ and $\left(\theta+\frac{1}{2} \pi\right)$, by p and ρ the pressure and density at this point, and by γ the ratio of the specific heats of the fluid. The four functions u, v, p and ρ of the variables r and θ satisfy the following partial differential equations which express the fundamental law of dynamics, the conservation of mass and the conservation of energy :

$$
\left.\begin{array}{r}
u \frac{\partial u}{\partial r}+\frac{v}{r} \frac{\partial u}{\partial \theta}-\frac{v^{2}}{r}+\frac{1}{\rho} \frac{\partial p}{\partial r}=0, \\
u \frac{\partial v}{\partial r}+\frac{v}{r} \frac{\partial v}{\partial \theta}+\frac{u v}{r}+\frac{\mathbf{l}}{\rho r} \frac{\partial p}{\partial \theta}=0, \tag{3}\\
\frac{\partial}{\partial r}\left(r^{2} \rho u \sin \theta\right)+\frac{\partial}{\partial \theta}(r \rho v \sin \theta)=0, \\
u \frac{\partial}{\partial r}\left(p \rho^{-\gamma}\right)+\frac{v}{r} \frac{\partial}{\partial \theta}\left(p \rho^{-\gamma}\right)=0 .
\end{array}\right\}
$$

We attempt to satisty the preceding equations by means of functions expanded in series of whole and increasing powers of r, the coefficients depending only on the variable θ :

$$
\left.\begin{array}{rl}
u(r, \theta) & =u_{0}(\theta)+\frac{r}{R} u_{1}(\theta)+\ldots \tag{4}\\
v(r, \theta) & =v_{0}(\theta)+\frac{r}{R} v_{1}(\theta)+\ldots \\
p(r, \theta) & =p_{0}(\theta)+\frac{r}{R} p_{1}(\theta)+\ldots, \\
\rho(r, \theta) & =\rho_{0}(\theta)+\frac{r}{R} \rho_{1}(\theta)+\ldots .
\end{array}\right\}
$$

By substitution of these expansions into equations (3) and by identification according to successive powers of r, one obtains an infinite set of differential equations. Equations (3) have a first integral, Bernoulli's equation. As the limiting speed q_{m} is constant in front of the shock and continuous across the shock wave, we have, valid in all the fluid,

$$
\begin{equation*}
\frac{2 \gamma}{\gamma-1} \frac{p}{\rho}+u^{2}+v^{2}=q_{m}^{2} . \tag{5}
\end{equation*}
$$

We also introduce the function $a_{0}(\theta)$ defined by:

$$
\begin{equation*}
a_{0}^{2}=\gamma \frac{p_{0}}{\rho_{0}}=\frac{\gamma-1}{2}\left(q_{m}^{2}-u_{0}^{2}-v_{0}^{2}\right) . \tag{6}
\end{equation*}
$$

The differential equations deduced from equations (3) can be written in the following form. Using given initial conditions, the functions with suffix 0 can be calculated from equations (7), while the functions with suffix 1 can be calculated from equations (8):

$$
\left.\begin{array}{r}
\text { 8): } \left.\begin{array}{r}
u_{0}^{\prime}-v_{0}=0, \\
v_{0}^{\prime}\left(1-\frac{a_{0}^{2}}{v_{0}^{2}}\right)+u_{0}\left(1-2 \frac{a_{0}^{2}}{v_{0}^{2}}\right)-\frac{a_{0}^{2}}{v_{0}} \cot \theta=0, \\
\frac{\rho_{0}^{\prime}}{\rho_{0}}\left(1-\frac{a_{0}^{2}}{v_{0}^{2}}\right)+\frac{u_{0}}{v_{0}}+\cot \theta=0, \\
\frac{p_{0}^{\prime}}{p_{0}}-\gamma \frac{\rho_{0}^{\prime}}{\rho_{0}}=0 .
\end{array}\right\} \\
u_{1}^{u_{1}^{\prime} v_{0}+u_{0} u_{1}-v_{0} v_{1}+\frac{a_{0}^{2}}{\gamma} \frac{p_{1}}{p_{0}}=0,} \\
\left(\frac{\rho_{1}}{\rho_{0}}\right)^{\prime}+\frac{v_{0} v_{0}^{\prime}}{a_{0}^{2}}+\frac{u_{1} v_{0}+v_{1}\left(2 u_{0}+v_{0}^{\prime}\right)}{a_{0}^{2}} \\
-\frac{\rho_{1}}{\rho_{0}}\left(\frac{\rho_{1}^{\prime}}{\rho_{0}}-\frac{u_{0}}{v_{0}}\right)+\frac{p_{1}}{p_{0}}\left(\frac{\rho_{0}^{\prime}}{\rho_{0}}-\frac{1}{\gamma} \frac{u_{0}}{v_{0}}\right)=0, \\
\left(\frac{\rho_{1}}{\rho_{0}}\right)^{\prime}+\frac{v_{1}^{\prime}}{v_{0}}+3 \frac{u_{1}}{v_{0}}+\frac{v_{1}}{v_{0}}\left(\frac{\rho_{0}^{\prime}}{\rho_{0}}+\cot \theta\right)+\frac{\rho_{1}}{\rho_{0}} \frac{u_{0}}{v_{0}}=0, \\
\frac{p_{1}}{p_{0}}-\frac{\rho_{1}}{\rho_{0}}+(\gamma-1) \frac{u_{0} u_{1}+v_{0} v_{1}}{a_{0}^{2}}=0 .
\end{array}\right\}
$$

3. Boundary conditions on the body

The body is formed by the stream surface extended from the point 0 . By expressing the condition that the differential equation of the stream function,

$$
\begin{equation*}
\frac{d r}{u}=\frac{r d \theta}{v} \tag{9}
\end{equation*}
$$

is satisfied by the function (1), one obtains the conditions

$$
\begin{align*}
v_{0}\left(\theta_{s}\right) & =0, \tag{10a}\\
\frac{v_{0}^{\prime}\left(\theta_{s}\right)}{2 \mathscr{R}}+\frac{v_{1}\left(\theta_{s}\right)}{R} & =\frac{u_{0}\left(\theta_{s}\right)}{2 \mathscr{R}} . \tag{10b}
\end{align*}
$$

According to the second of equations (7), one has that $v_{0}^{\prime}\left(\theta_{s}\right)=-2 u_{0}\left(\theta_{s}\right)$; therefore the condition ($10 b$) can be written in the form

$$
\begin{equation*}
\frac{R}{\mathscr{R}}=\frac{2}{3} \frac{v_{1}\left(\theta_{s}\right)}{u_{0}\left(\theta_{s}\right)} \tag{11}
\end{equation*}
$$

4. Conditions on the shock wave

At the shock wave, a certain number of conditions must be satisfied. These conditions, which express the fundamental law of dynamics, the conservation of mass and the conservation of energy, are expressed by equations (12), in which \bar{c}, \bar{p} and $\bar{\rho}$ designate the speed of sound, pressure and density in front of the shock
while β is the angle which the tangent to the shock wave makes with the axis of revolution. \mathscr{M} designates the Mach number along the normal ($\mathscr{A}=M \sin \beta$).

$$
\begin{align*}
u & =\bar{q} \cos \theta+\frac{2 \bar{c}}{\gamma+1}\left(\mathscr{M}-\frac{1}{\mathscr{M}}\right) \sin (\beta-\theta), \\
v & =-\bar{q} \sin \theta-\frac{2 \bar{c}}{\gamma+1}\left(\mathscr{M}-\frac{1}{\mathscr{M}}\right) \cos (\beta-\theta), \\
\frac{p}{\bar{p}} & =\frac{2 \gamma}{\gamma+1} \mathscr{M}^{2}-\frac{\gamma-1}{\gamma+1} \tag{12}\\
\frac{\bar{\rho}}{\rho} & =\frac{2}{\gamma+1} \frac{1}{\mathscr{M}^{2}}+\frac{\gamma-1}{\gamma+1} .
\end{align*}
$$

The Mach number M is expressed as a function of the speed \bar{q} by

$$
\begin{equation*}
M^{2}=\frac{2}{\gamma-1} \frac{\bar{q}^{2}}{q_{m}^{2}-\bar{q}^{2}} \tag{13}
\end{equation*}
$$

By expressing the fact that the equations (12) are satisfied identically on the shock wave, one obtains the following values for the functions with suffix 0 and 1 for $\theta=\theta_{w}$:

$$
\left.\begin{array}{l}
u_{0}\left(\theta_{w}\right)=\bar{q} \cos \theta_{w}, \\
v_{0}\left(\theta_{w}\right)=\frac{\gamma-1}{\gamma+1} \frac{\bar{q}^{2} \cos ^{2} \theta_{w}-q_{m}^{2}}{\bar{q} \sin \theta_{w}}, \\
\frac{p_{0}\left(\theta_{w}\right)}{\bar{p}}=\frac{2 \gamma}{\gamma+1} M^{2} \sin ^{2} \theta_{w}-\frac{\gamma-1}{\gamma+1}, \\
\frac{\bar{\rho}}{\rho_{0}\left(\theta_{w}\right)}=\frac{2}{\gamma+1} \frac{1}{M^{2} \sin ^{2} \theta_{w}}+\frac{\gamma-1}{\gamma+1} ; \\
u_{1}+u_{0} \tan \theta_{w}+v_{0}=0, \\
2 v_{1}+\frac{\gamma-7}{\gamma+1} u_{0}+\frac{\gamma+3}{\gamma+1} v_{0} \cot \theta_{w}=0, \tag{15}\\
\frac{p_{1}}{p_{0}}=\frac{\gamma}{\gamma+1} \cot \theta_{w}-\frac{4 \gamma}{\gamma+1} \frac{u_{0} v_{0}}{a_{0}^{2}}, \\
\frac{\rho_{1}}{\rho_{0}}=\frac{2 \gamma+3}{\gamma+1} \cot \theta_{w}+2 \frac{\gamma-1}{\gamma+1} \frac{u_{0}}{v_{0}}
\end{array}\right\}
$$

5. Numerical integration

The numerical integration of equations (7) and (8) has been performed with the help of electronic computer gamma of the Faculty of Sciences of Grenoble. The great capacity of the machine and its high velocity of execution have allowed the computation of 209 cases to be performed, corresponding to 15 different bodies. The method of integration adopted is the Runge--Kutta method of fourth order, with intervals equal to one-twentieth of a degree; it seems that the value of the ratio of the curvatures can then be predicted with 4 exact digits. The results, which are given in the following tables,* have been computed with the adiabatic

* For $u_{0}\left(\theta_{s}\right) / q_{m}=(1 / 6)^{\frac{1}{2}}=0.4082$, the speed on the body, at the vertex, is sonic.
index having the value $\gamma=1 \cdot 4$. The ratio of the curvatures is negative for the limiting velocity for which the shock wave is detached from the body; it is zero for a given value of the Mach number, which has been computed.

In the case where the angle θ_{s} is small, it can be verified that the asymptotic formula, given by Rao (1956),

$$
\begin{equation*}
\frac{R}{\mathscr{R}} \sim \frac{40}{81} \frac{1}{(\gamma+1)^{4}} \frac{\left(M^{2}-1\right)^{3}}{M^{13}} \theta_{s}^{-7}, \tag{16}
\end{equation*}
$$

is satisfactory for finite values of the Mach number. For higher values of θ_{s}, the results are exhibited graphically in figure 2.

Figure 2. Values of $R / \mathscr{R} v s M$ for various θ_{8}.

REFERENCES

Cabannes, H. 1951 Etude de l'onde de choc attachée dans les écoulements de révolution. Rech. aéro. 24, 17-23.
Kopal, Zdenek 1947 Tables of supersonic flow around cones. Massachusetts Institute of Technology.
Shen, S. F. \& Lin, C. C. 1951 On the attached curved shock in front of a sharp-nosed axially symmetrical body placed in a uniform stream. N.A.C.A. Technical Note, 2505.

Rao, P. S. 1956 Supersonic bangs. Aeronaut. Quart. 7, 135-55.

$u_{0}\left(\theta_{8}\right)$				$u_{0}\left(\theta_{s}\right)$			
q_{m}	M	$\theta_{w}{ }^{*}$	$R / \mathscr{R}^{\text {R }}$	q_{n}	M	θ_{w}	R / \mathscr{R}
$\theta_{s}=5^{\circ}$				$\theta_{s}=12.5{ }^{\circ}$ (cont.)			
0.35	1-1732	89.224	-0.3234	$0 \cdot 4082$	1-1674	61-593	$7 \cdot 3049$
$0 \cdot 39$	1.0215	86.921	- 1.4832	$0 \cdot 45$	1.2892	$52 \cdot 804$	$14 \cdot 2637$
0.3913	1.0180	$86 \cdot 441$	-1.7700	0.5	$1 \cdot 4633$	44.923	15.6587
$0 \cdot 395$	1.0128	84-104	-2.2779	$0 \cdot 55$	$1 \cdot 6623$	38.934	13.1465
0.399	1.0168	$80 \cdot 841$	6.0933	$0 \cdot 6$	$1 \cdot 8916$	34-144	$10 \cdot 0314$
$0 \cdot 4$	1.0187	80.072	10.4070	$0 \cdot 65$	$2 \cdot 1618$	$30 \cdot 176$	$7 \cdot 4305$
$0 \cdot 4082$	1.0414	74-131	167.7417	0.7	$2 \cdot 4900$	26.802	$5 \cdot 4927$
0.55	$1 \cdot 5151$	$41 \cdot 363$	4759.00	0.75	$2 \cdot 9070$	23.869	$4 \cdot 0938$
$0 \cdot 6$	$1 \cdot 7258$	$35 \cdot 482$	2196.71	0.8	$3 \cdot 4725$	21-265	3.0785
0.65	1.9699	$30 \cdot 597$	1172.21	0.85	$4 \cdot 3239$	18.903	$2 \cdot 3215$
0.7	$2 \cdot 2611$	26.372	576.76	0.9	5-8910	16.709	$1 \cdot 7300$
0.75	$2 \cdot 6224$	22.592	$255 \cdot 98$	0.95	11-1397	$14 \cdot 606$	$1 \cdot 2335$
0.8	$3 \cdot 0961$	$19 \cdot 107$	$103 \cdot 76$	$\theta_{s}=15^{\circ}$			
0.85	$3 \cdot 7723$	$15 \cdot 792$	29.586				
0.9	$4 \cdot 8895$	$12 \cdot 527$	12.9795	0.3	1.2830	84.715	-1.0269
0.95	$7 \cdot 4586$	$9 \cdot 136$	$4 \cdot 3398$	$0 \cdot 35$	$1 \cdot 1196$	75-231	-0.8898
0.99	$22 \cdot 6254$	$5 \cdot 992$	1-3343	$0 \cdot 3670$	1-1289	70.070	0.0000
$\theta_{s}=7.5^{\circ}$				$0 \cdot 385$	1-1608	64.965	1.6265
$0 \cdot 36$	$1.0980{ }^{s}$	$87 \cdot 324$	-0.6790	0.4	1-1964	$61 \cdot 214$	$3 \cdot 1447$ 6.6419
0.39	1.0334	$78 \cdot 125$	$0 \cdot 6794$	${ }_{0} 0.45$	1.3448 1.5224	$51 \cdot 391$ $\mathbf{4 4} 289$	6.6419 7.2050
0.395	1.0420	$75 \cdot 455$	$6 \cdot 1709$	$0 \cdot 55$	1.7271	38.827	6.3878
$0 \cdot 4$	$1 \cdot 0529$	73.030	15.591	$0 \cdot 6$	1-9648	34-444	$5 \cdot 2728$
0.4082	1.0766	69.063	$43 \cdot 683$	$0 \cdot 65$	$2 \cdot 2468$	30.816	$4 \cdot 2547$
0.45	1-1971	57.012	$212 \cdot 00$	$0 \cdot 7$	2.5928	27.738	$3 \cdot 4213$
0.5	$1 \cdot 3657$	$47 \cdot 360$	281.44	0.75	$3 \cdot 0381$	25.071	$2 \cdot 7579$
0.55	1.5555	$40 \cdot 313$	223.08	$0 \cdot 8$	$3 \cdot 6541$	22.712	$2 \cdot 2271$
0.6	1.7715	34.729	145.74	$0 \cdot 85$	$4 \cdot 6151$	20.587	1.7922
0.65	$2 \cdot 0229$	30.082	84.598	0.9	6.5337	18.630	1.4227
0.7	$2 \cdot 3244$	26.080	$46 \cdot 690$	0.95	16.8844	16.787	1.0793
0.75	$2 \cdot 7007$	22.537	$25 \cdot 197$	$0 \cdot 95$	16.8844	16.787	1.0793
0.8	$3 \cdot 1985$	19.326	13.516	$\theta_{s}=17.5^{\circ}$			
0.85	$3 \cdot 9177$	16.348	$7 \cdot 3241$	$0 \cdot 3$	1.2665	$82 \cdot 113$	-1.1618
0.9	$5 \cdot 1329$	13.505	$3 \cdot 9809$	$0 \cdot 3582$	$1 \cdot 1707$	68.912	-1.1618
0.95	$8 \cdot 1036$	$10 \cdot 665$	$2 \cdot 1041$	$0 \cdot 3611$	1-1743	$68 \cdot 153$	$0 \cdot 0000$
0.98	16.8180	$8 \cdot 850$	1-2883	$0 \cdot 4$	$1 \cdot 2551$	59.124	2.1327
$\theta_{s}=10^{\circ}$				0.45	1.4062	50.476	$3 \cdot 8682$
0.3765	1.0535	77.311	-0.8455	0.5	1.5881	$44 \cdot 067$	$4 \cdot 2223$
0.3810	$1 \cdot 0576$	75.347	$0 \cdot 0000$	$0 \cdot 55$	$1 \cdot 7996$	39.089	$3 \cdot 9217$
$0 \cdot 4$	1.0948	67.957	9.0936	0.6	$2 \cdot 0472$	$35 \cdot 079$	$3 \cdot 4297$
$0 \cdot 4082$	1-1190	64.899	15.9125	0.65	$2 \cdot 3438$	31.756	2.9338
$0 \cdot 45$	1-2398	$54 \cdot 713$	$42 \cdot 7685$	0.7	$2 \cdot 7122$	28.939	$2 \cdot 4909$
0.5	1.4109	45.976	49.7619	0.75	3-1947	26.502	$2 \cdot 1100$
0.55	1.6049	39.445	39.7939	0.8	$3 \cdot 8809$	$24 \cdot 355$	1.7717
$0 \cdot 6$	1.8271	$34 \cdot 238$	27.6345	$0 \cdot 85$	$5 \cdot 0080$	$22 \cdot 430$	$1 \cdot 4945$
0.65	$2 \cdot 0872$	29.915	18.1499	0.9	$7 \cdot 5793$	$20 \cdot 699$	1-2427
0.7	$2 \cdot 4009$	26.220	11.8199	$\theta_{s}=20^{\circ}$			
0.75	$2 \cdot 7956$	22.985	7.7432				
0.8	$3 \cdot 3231$	20.093	$5 \cdot 1675$	$0 \cdot 3$	1.2728	79.220	-1.1975
$0 \cdot 85$	$4 \cdot 0951$	17.499	$3 \cdot 4898$	$0 \cdot 356$	$1 \cdot 2271$	66.747	-0.0045
$0 \cdot 9$	$5 \cdot 4526$	14.966	$2 \cdot 3434$	0.3561	$1 \cdot 2259$	66.670	0.0000
0.95	$9 \cdot 1471$	12.541	1.5017	$0 \cdot 4$	1-3191	$57 \cdot 697$	1.5749
0.98	19.2181	11.048	1-0663	$0 \cdot 4082$	$1 \cdot 3452$	56.068	1.8450
$\begin{aligned} \theta_{s} & =12.5{ }^{\circ}\end{aligned}$				0.45	$1 \cdot 4737$	50.008	2.6155
				0.5	$1 \cdot 6609$	$44 \cdot 205$	$2 \cdot 8858$
0.3	$1 \cdot 3168$	86.723	-0.8426	0.55	1.8806	$39 \cdot 658$	$2 \cdot 7762$
0.3738	1.0902	$72 \cdot 409$	$0 \cdot 0249$	0.6	2-1404	35.980	$2 \cdot 5168$
$0 \cdot 4$	1-1429	$64 \cdot 103$	$5 \cdot 1224$	$0 \cdot 65$	$2 \cdot 4555$	32.928	$2 \cdot 2497$

Table 1

* The angles $\theta_{z v}$ are given in degrees.

$\underline{u_{0}\left(\theta_{8}\right)}$				$\underline{u_{0}\left(\theta_{s}\right)}$			
q_{m}	M	θ_{w}	R / \mathscr{R}	q_{m}	M	θ_{w}	R / \mathscr{R}
$\theta_{8}=20^{\circ}$ (cont.)				$\theta_{s}=35^{\circ}$ (cont.)			
$0 \cdot 7$	2.8531	$30 \cdot 339$	1.9759	0.3395	1.7105	$64 \cdot 316$	$0 \cdot 0000$
0.75	$3 \cdot 3862$	$28 \cdot 105$	$1 \cdot 7346$	$0 \cdot 35$	1.7309	$63 \cdot 009$	$0 \cdot 1325$
0.8	4-1742	$26 \cdot 141$	1.5129	0.4	1.8766	57.548	$0 \cdot 6104$
$0 \cdot 85$	5.5710	24.391	$1 \cdot 3591$	$0 \cdot 4082$	1.9115	$56 \cdot 656$	0.6745
0.9	9.6230	$22 \cdot 807$	1-1805	$0 \cdot 45$	$2 \cdot 0875$	$53 \cdot 216$ -	0.8793
$\theta_{\mathrm{g}}=22.5^{\circ}$				0.5 0.55	2.3633	$49 \cdot 758$ 46.957	1.0112
0.3	1-3014	76.482	-1.1329	0.55 0.6	$2 \cdot 7228$ $\mathbf{3} 2112$	$46 \cdot 957$ $44 \cdot 653$	1.0635 1.0673
$0 \cdot 3518$	$1 \cdot 2840$	65.588	0.0000	0.65	$3 \cdot 9340$	$42 \cdot 729$	1.0473
$0 \cdot 3520$	$1 \cdot 2856$	$65 \cdot 596$	0.0057	0.7	5-2059	$41 \cdot 122$	1.0160
0.4	1.3888	56.913	1.2413	0.75	$8 \cdot 6893$	39.706	0.9780
$0 \cdot 4082$	1.4157	$55 \cdot 363$	1.4234	0.78	24.7546	38.964	$0 \cdot 8756$
0.45	$1 \cdot 5479$	$49 \cdot 920$	1.9532	$\theta_{8}=40^{\circ}$			
0.5	1.7418	$44 \cdot 643$	$2 \cdot 1769$				
0.55	1.9718	$40 \cdot 476$	$2 \cdot 1487$	0.3	1.9533	69.453	-0.4848
0.6	$2 \cdot 2471$	$37 \cdot 092$	$2 \cdot 0138$	$0 \cdot 3374$	1.9938	65-177	-0.0107
0.65	$2 \cdot 5860$	34.279	1.8415	0.3381	1.9982	$65 \cdot 147$	0.0000
0.7	$3 \cdot 0229$	31.894	$1 \cdot 6881$	$0 \cdot 34$	1.9993	$64 \cdot 902$	0.0133
0.75	3.6274	29.837	$1 \cdot 4817$	$0 \cdot 35$	$2 \cdot 0235$	$63 \cdot 863$	$0 \cdot 1217$
0.8	4.5707	28.036	$1 \cdot 3309$	$0 \cdot 4$	$2 \cdot 2027$	59.282	$0 \cdot 5052$
0.85	16.7401	$25 \cdot 002$	1.0461	$0 \cdot 4082$	$2 \cdot 2463$	58.527	$0 \cdot 5565$
$\theta_{s}=25^{\circ}$				$0 \cdot 45$	$2 \cdot 4712$	55.606	0.7275
$0 \cdot 3$	1.3484	74-181	- 1.0138	0.55	2.84752	50.238	0.8405 0.9019
0.3478	$1 \cdot 3487$	64.913	-0.0089	$0 \cdot 6$	$4 \cdot 2147$	$48 \cdot 299$	0.9217
$0 \cdot 3481$	1-3493	64.841	$0 \cdot 0000$	$0 \cdot 65$	$5 \cdot 8293$	46.589	0.9201
$0 \cdot 3489$	$1 \cdot 3504$	$64 \cdot 704$	0.0174	0.7	12.8630	$45 \cdot 186$	0.9114
0.35	1.3534	64.550	$0 \cdot 0427$	0.711	27.3166	44.907	0.8763
$0 \cdot 4$	$1 \cdot 4653$	56.367	1.0250	$\theta_{s}=45^{\circ}$			
$0 \cdot 4082$	$1 \cdot 4931$	55.066	$1 \cdot 1591$				
$0 \cdot 45$	1.6299	$50 \cdot 146$	$1 \cdot 5576$	$0 \cdot 3$	$2 \cdot 3720$	70.058	-0.4205
0.5	1.8325	$45 \cdot 328$	1.7465	$0 \cdot 32$	$2 \cdot 3910$	68.077	-0.1833
0.55	$2 \cdot 0757$	$41 \cdot 497$	1.7606	$0 \cdot 3383$	$2 \cdot 4336$	66.381	$0 \cdot 0000$
0.6	$2 \cdot 3712$	38.374	$1 \cdot 6849$	$0 \cdot 34$	$2 \cdot 4387$	66.228	0.0154
0.65	2.7422	$35 \cdot 775$	1.5724	0.35	$2 \cdot 4718$	$65 \cdot 354$	$0 \cdot 1017$
0.7	$3 \cdot 2335$	33.571	$1 \cdot 4482$	$0 \cdot 4$	$2 \cdot 7233$	$6 \mathrm{I} \cdot 487$	$0 \cdot 4271$
0.75	$3 \cdot 9442$	31-698	$1 \cdot 3211$	$0 \cdot 4082$	$2 \cdot 7866$	$60 \cdot 847$	$0 \cdot 4709$
0.8	$5 \cdot 1439$	30.018	1.2101	0.45	3.1279	$58 \cdot 360$	0.6220
$0 \cdot 85$	8-1165	28.5546	1.0877	0.5	$3 \cdot 7626$	55.827	0.7311
0.9	27-9654	$27 \cdot 626$	$0 \cdot 8890$	0.55	$4 \cdot 8844$	53.757	0.7937
$\theta_{8}=30^{\circ}$				$0 \cdot 6$	$7 \cdot 7892$	$52 \cdot 046$	0.8261
				0.633	26.2600	51.075	$0 \cdot 8640$
$0 \cdot 3$	1.4857	$71 \cdot 094$	-0.7675	$\theta_{\mathrm{a}}=50^{\circ}$			
$0 \cdot 3427$	1.5058	$64 \cdot 163$	0.0000				
0.35	1.5180	63.068	$0 \cdot 1194$	0.3	3.1392	71-261	-0.3833
$0 \cdot 4$	$1 \cdot 6446$	$56 \cdot 477$	$0 \cdot 7645$	$0 \cdot 32$	3.1735	69.593	-0.1723
$0 \cdot 4082$	1.6750	55•409	0.8509	0.3395	$3 \cdot 2539$	68.078	-0.0012
$0 \cdot 45$	1.8259	$51 \cdot 326$	1-1179	0.3396	$3 \cdot 2546$	68.067	0.0000
0.5	$2 \cdot 0546$	$47 \cdot 265$	1.2721	0.35	3.3154	$67 \cdot 302$	0.0780
0.55	$2 \cdot 3390$	$44 \cdot 050$	1.3128	$0 \cdot 4$	$3 \cdot 7916$	64.038	0.3675
0.6	$2 \cdot 6971$	41.325	$1 \cdot 2929$	0.4082	3.9220	63.497	$0 \cdot 4078$
0.65	3.1745	39.093	1.2410	0.45	4.7239	61.385	$0 \cdot 5445$
0.7	$3 \cdot 8645$	37.202	1-1786	0.5	7.0019	59.225	$0 \cdot 6520$
0.75	$5 \cdot 0277$	$35 \cdot 579$	1-1085	0.54	21.4992	57.782	$0 \cdot 8512$
0.8	$7 \cdot 8707$	34-171	1.0384	$\theta_{8}=55^{\circ}$			
0.835	24.0388	$32 \cdot 291$	0.8803				
$\theta_{s}=35^{\circ}$				0.3	$5 \cdot 4816$	$72 \cdot 901$	-0.3628
				0.35	6.2273	69.588	0.0576
$0 \cdot 3$	$1 \cdot 6797$	69.681	-0.5928	$0 \cdot 4$	$9 \cdot 8838$	66.850	$0 \cdot 3202$
0.3391	1.7099	64.361	-0.0047	$0 \cdot 4082$	$12 \cdot 0445$	66.394	$0 \cdot 3573$

Table 1 (cont.)

