# Curvature of attached shock waves in steady axially symmetric flow

By E. BIANCO, H. CABANNES AND J. KUNTZMANN Faculties of Sciences of Grenoble and Marseille (France)

(Received 8 July 1959)

An electronic computer has been employed to calculate the ratio between the initial radii of curvature of the attached shock wave and the body for an axially symmetrical body in a uniform supersonic stream. The results are obtained with 4 exact digits for more than 200 cases. They extend results obtained previously (Cabannes 1951) by means of numerical integration.

### 1. Introduction

We consider a body of revolution placed in a compressible fluid. The fluid possesses at infinity a uniform supersonic velocity  $\bar{q}$  parallel to the axis of revolution Ox. A shock wave is formed in front of the body, and limits the region in



FIGURE 1. Diagram of the flow field.

which the flow is uniform. Viscosity and thermal conductivity are neglected outside the shock. We suppose that the surface of the body is tangential at the axis of revolution to a cone with semi-angle  $\theta_s$ , and that the angle  $\theta_s$  and the Mach number M of the upstream flow have been chosen in such a way that the shock wave is attached at the vertex O of the obstacle. We locate the position of a point P in a meridian plane by the polar co-ordinates OP = r and  $\angle POx = \theta$  (see figure 1). By means of these co-ordinates, the equation of the obstacle in the neighbourhood of the point O can be written in the form (1) and the equation of the shock wave, in the neighbourhood of the same point, in the form (2), namely,

body: 
$$\theta = \theta_s + \frac{r}{2\mathscr{R}} + \dots,$$
 (1)

shock: 
$$\theta = \theta_w + \frac{r}{2R} + \dots$$
 (2)

The angle  $\theta_w$  is determined by the theory of axially symmetric flow (Kopal 1947); it depends on the Mach number M and the angle  $\theta_s$ . The object of the present paper is to give tables for the determination of the value of the ratio  $(R/\mathcal{R})$  of the radii of curvature, at the axis of revolution, of the shock wave and the body; this ratio likewise depends on the Mach number M and the angle  $\theta_s$ .

# 2. Equations of motion

We designate by u and v the components of the fluid velocity at a point P in the directions  $\theta$  and  $(\theta + \frac{1}{2}\pi)$ , by p and  $\rho$  the pressure and density at this point, and by  $\gamma$  the ratio of the specific heats of the fluid. The four functions u, v, p and  $\rho$  of the variables r and  $\theta$  satisfy the following partial differential equations which express the fundamental law of dynamics, the conservation of mass and the conservation of energy:

$$u\frac{\partial u}{\partial r} + \frac{v}{r}\frac{\partial u}{\partial \theta} - \frac{v^{2}}{r} + \frac{1}{\rho}\frac{\partial p}{\partial r} = 0,$$

$$u\frac{\partial v}{\partial r} + \frac{v}{r}\frac{\partial v}{\partial \theta} + \frac{uv}{r} + \frac{1}{\rho r}\frac{\partial p}{\partial \theta} = 0,$$

$$\frac{\partial}{\partial r}(r^{2}\rho u\sin\theta) + \frac{\partial}{\partial \theta}(r\rho v\sin\theta) = 0,$$

$$u\frac{\partial}{\partial r}(p\rho^{-\gamma}) + \frac{v}{r}\frac{\partial}{\partial \theta}(p\rho^{-\gamma}) = 0.$$
(3)

We attempt to satisfy the preceding equations by means of functions expanded in series of whole and increasing powers of r, the coefficients depending only on the variable  $\theta$ :

$$u(r,\theta) = u_0(\theta) + \frac{r}{R} u_1(\theta) + \dots,$$

$$v(r,\theta) = v_0(\theta) + \frac{r}{R} v_1(\theta) + \dots,$$

$$p(r,\theta) = p_0(\theta) + \frac{r}{R} p_1(\theta) + \dots,$$

$$\rho(r,\theta) = \rho_0(\theta) + \frac{r}{R} \rho_1(\theta) + \dots,$$
(4)

By substitution of these expansions into equations (3) and by identification according to successive powers of r, one obtains an infinite set of differential equations. Equations (3) have a first integral, Bernoulli's equation. As the limiting speed  $q_m$  is constant in front of the shock and continuous across the shock wave, we have, valid in all the fluid,

$$\frac{2\gamma}{\gamma - 1}\frac{p}{\rho} + u^2 + v^2 = q_m^2.$$
 (5)

We also introduce the function  $a_0(\theta)$  defined by:

$$a_0^2 = \gamma \frac{p_0}{\rho_0} = \frac{\gamma - 1}{2} \left( q_m^2 - u_0^2 - v_0^2 \right).$$
(6)

39-2

The differential equations deduced from equations (3) can be written in the following form. Using given initial conditions, the functions with suffix 0 can be calculated from equations (7), while the functions with suffix 1 can be calculated from equations (8):

#### 3. Boundary conditions on the body

The body is formed by the stream surface extended from the point 0. By expressing the condition that the differential equation of the stream function,

$$\frac{dr}{u} = \frac{r\,d\theta}{v},\tag{9}$$

is satisfied by the function (1), one obtains the conditions

$$v_0(\theta_s) = 0, \tag{10a}$$

$$\frac{v_0'(\theta_s)}{2\mathscr{R}} + \frac{v_1(\theta_s)}{R} = \frac{u_0(\theta_s)}{2\mathscr{R}}.$$
 (10b)

According to the second of equations (7), one has that  $v'_0(\theta_s) = -2u_0(\theta_s)$ ; therefore the condition (10b) can be written in the form

$$\frac{R}{\Re} = \frac{2}{3} \frac{v_1(\theta_s)}{u_0(\theta_s)}.$$
(11)

## 4. Conditions on the shock wave

At the shock wave, a certain number of conditions must be satisfied. These conditions, which express the fundamental law of dynamics, the conservation of mass and the conservation of energy, are expressed by equations (12), in which  $\bar{c}$ ,  $\bar{p}$  and  $\bar{\rho}$  designate the speed of sound, pressure and density in front of the shock

while  $\beta$  is the angle which the tangent to the shock wave makes with the axis of revolution.  $\mathscr{M}$  designates the Mach number along the normal ( $\mathscr{M} = M \sin \beta$ ).

$$u = \bar{q}\cos\theta + \frac{2\bar{c}}{\gamma+1}\left(\mathcal{M} - \frac{1}{\mathcal{M}}\right)\sin(\beta-\theta),$$

$$v = -\bar{q}\sin\theta - \frac{2\bar{c}}{\gamma+1}\left(\mathcal{M} - \frac{1}{\mathcal{M}}\right)\cos(\beta-\theta),$$

$$\frac{p}{\bar{p}} = \frac{2\gamma}{\gamma+1}\mathcal{M}^2 - \frac{\gamma-1}{\gamma+1},$$

$$\bar{p} = \frac{2}{\gamma+1}\frac{1}{\mathcal{M}^2} + \frac{\gamma-1}{\gamma+1}.$$
(12)

The Mach number M is expressed as a function of the speed  $\bar{q}$  by

$$M^{2} = \frac{2}{\gamma - 1} \frac{\bar{q}^{2}}{q_{m}^{2} - \bar{q}^{2}}.$$
 (13)

By expressing the fact that the equations (12) are satisfied identically on the shock wave, one obtains the following values for the functions with suffix 0 and 1 for  $\theta = \theta_w$ :

$$u_{0}(\theta_{w}) = q \cos \theta_{w},$$

$$v_{0}(\theta_{w}) = \frac{\gamma - 1}{\gamma + 1} \frac{\overline{q}^{2} \cos^{2} \theta_{w} - q_{m}^{2}}{\overline{q} \sin \theta_{w}},$$

$$\frac{p_{0}(\theta_{w})}{\overline{p}} = \frac{2\gamma}{\gamma + 1} M^{2} \sin^{2} \theta_{w} - \frac{\gamma - 1}{\gamma + 1},$$

$$\frac{\overline{\rho}}{\rho_{0}(\theta_{w})} = \frac{2}{\gamma + 1} \frac{1}{M^{2} \sin^{2} \theta_{w}} + \frac{\gamma - 1}{\gamma + 1};$$

$$u_{1} + u_{0} \tan \theta_{w} + v_{0} = 0,$$

$$2v_{1} + \frac{\gamma - 7}{\gamma + 1} u_{0} + \frac{\gamma + 3}{\gamma + 1} v_{0} \cot \theta_{w} = 0,$$

$$\frac{p_{1}}{p_{0}} = \frac{\gamma}{\gamma + 1} \cot \theta_{w} - \frac{4\gamma}{\gamma + 1} \frac{u_{0}v_{0}}{a_{0}^{2}},$$

$$\frac{\rho_{1}}{\rho_{0}} = \frac{2\gamma + 3}{\gamma + 1} \cot \theta_{w} + 2\frac{\gamma - 1}{\gamma + 1} \frac{u_{0}}{v_{0}}.$$
(15)

# 5. Numerical integration

The numerical integration of equations (7) and (8) has been performed with the help of electronic computer gamma of the Faculty of Sciences of Grenoble. The great capacity of the machine and its high velocity of execution have allowed the computation of 209 cases to be performed, corresponding to 15 different bodies. The method of integration adopted is the Runge-Kutta method of fourth order, with intervals equal to one-twentieth of a degree; it seems that the value of the ratio of the curvatures can then be predicted with 4 exact digits. The results, which are given in the following tables,\* have been computed with the adiabatic

\* For  $u_0(\theta_s)/q_m = (1/6)^{\frac{1}{2}} = 0.4082$ , the speed on the body, at the vertex, is sonic.

index having the value  $\gamma = 1.4$ . The ratio of the curvatures is negative for the limiting velocity for which the shock wave is detached from the body; it is zero for a given value of the Mach number, which has been computed.

In the case where the angle  $\theta_s$  is small, it can be verified that the asymptotic formula, given by Rao (1956),

$$\frac{R}{\Re} \sim \frac{40}{81} \frac{1}{(\gamma+1)^4} \frac{(M^2-1)^3}{M^{13}} \theta_s^{-7}, \tag{16}$$

is satisfactory for finite values of the Mach number. For higher values of  $\theta_s$ , the results are exhibited graphically in figure 2.



#### REFERENCES

CABANNES, H. 1951 Etude de l'onde de choc attachée dans les écoulements de révolution. Rech. aéro. 24, 17–23.

- KOPAL, ZDENER 1947 Tables of supersonic flow around cones. Massachusetts Institute of Technology.
- SHEN, S. F. & LIN, C. C. 1951 On the attached curved shock in front of a sharp-nosed axially symmetrical body placed in a uniform stream. N.A.C.A. Technical Note, 2505.

RAO, P. S. 1956 Supersonic bangs. Aeronaut. Quart. 7, 135-55.

| $u_0(\theta_s)$ |                  |                     |                  | $u_0(\theta_*)$   |                  |                        |                 |
|-----------------|------------------|---------------------|------------------|-------------------|------------------|------------------------|-----------------|
| qm              | M                | $\theta_w^*$        | $R/\mathscr{R}$  | $\frac{q_m}{q_m}$ | M                | $\theta_{w}$           | $R/\mathscr{R}$ |
|                 | 6                | $h_{-} = 5^{\circ}$ |                  | 1.00              | $\theta_{-} = 1$ | $12.5^{\circ}$ (cont.) | '               |
| 0.35            | 1.1739           | 80.224              | 0.3234           | 0.4089            | 1.1674           | 61.593                 | 7.3049          |
| 0.39            | 1.0215           | 86.921              | - 1.4832         | 0.45              | 1.9809           | 52.804                 | 14.9637         |
| 0.3913          | 1.0180           | 86.441              | -1.7700          | 0.5               | 1.4633           | 44.923                 | 15.6587         |
| 0.395           | 1.0128           | 84.104              | -2.2779          | 0.55              | 1.6623           | 38.934                 | 13.1465         |
| 0.399           | 1.0168           | 80.841              | 6.0933           | 0.6               | 1.8916           | 34.144                 | 10.0314         |
| 0.4             | 1.0187           | 80.072              | 10.4070          | 0.65              | $2 \cdot 1618$   | 30.176                 | 7.4305          |
| 0.4082          | 1.0414           | 74.131              | 167.7417         | 0.7               | 2.4900           | $26 \cdot 802$         | 5.4927          |
| 0.55            | 1.5151           | 41.363              | 4759.00          | 0.75              | 2.9070           | $23 \cdot 869$         | 4.0938          |
| 0.6             | 1.7258           | $35 \cdot 482$      | 2196.71          | 0.8               | 3.4725           | 21.265                 | 3.0785          |
| 0.65            | 1.9699           | 30.597              | 1172.21          | 0.85              | 4.3239           | 18.903                 | 2.3215          |
| 0.7             | 2.2611           | 26.372              | 576.76           | 0.9               | 5.8910           | 16.709                 | 1.7300          |
| 0.75            | 2.6224           | 22.592              | 255.98           | 0.95              | 11.1397          | 14.606                 | 1.2335          |
| 0.8             | 3.0901           | 19.107              | 103.76           |                   | А                | - 15°                  |                 |
| 0.85            | 31//23<br>4.0005 | 10.792              | 29.000           | 0.9               | 1 0020           | 94.715                 | 1 0900          |
| 0.95            | 4.9999           | 0.136               | 12.9795          | 0.35              | 1.1106           | 04·710<br>75.991       | 1.0209          |
| 0.99            | 22.6254          | 5.009               | 1.3343           | 0.3670            | 1.1980           | 70.070                 | 0.0000          |
| 0.00            | 22.0204          | 0.002               | 1 0040           | 0.385             | 1.1608           | 64.965                 | 1.6265          |
|                 | $\theta_s$       | $= 7.5^{\circ}$     |                  | 0.4               | 1.1964           | $61 \cdot 214$         | 3.1447          |
| 0.36            | 1.0980           | 87.324              | 0.6790           | 0.45              | 1.3448           | $51 \cdot 391$         | 6.6419          |
| 0.39            | 1.0334           | $78 \cdot 125$      | 0.6794           | 0.5               | 1.5224           | $44 \cdot 289$         | $7 \cdot 2050$  |
| 0.395           | 1.0420           | 75.455              | 6.1709           | 0.55              | 1.7271           | $38 \cdot 827$         | 6.3878          |
| 0.4000          | 1.0529           | 73.030              | 15.591           | 0.6               | 1.9648           | $34 \cdot 444$         | 5.2728          |
| 0.4082          | 1.0766           | 69.063              | 43.083           | 0.65              | $2 \cdot 2468$   | 30.816                 | 4.2547          |
| 0.40            | 1.2857           | 57.012              | 212.00           | 0.7               | 2.5928           | 27.738                 | 3.4213          |
| 0.55            | 1.5555           | 47.300              | 201.44           | 0.75              | 3.0381           | 25.071                 | 2.7579          |
| 0.00            | 1.7715           | 34.729              | 145.74           | 0.8               | 3.6541           | 22.712                 | $2 \cdot 2271$  |
| 0.65            | 2.0229           | 30.082              | 84.598           | 0.85              | 4.6151           | 20.587                 | 1.7922          |
| 0.7             | 2.3244           | 26.080              | 46.690           | 0.9               | 6.5337           | 18.630                 | 1.4227          |
| 0.75            | 2.7007           | 22.537              | 25.197           | 0.95              | 10.8844          | 10.787                 | 1.0793          |
| 0.8             | 3.1985           | 19.326              | 13.516           |                   | θ.               | $= 17.5^{\circ}$       |                 |
| 0.85            | 3.9177           | 16.348              | 7.3241           | 0.3               | 1.2665           | 82.113                 | - 1.1618        |
| 0.8             | 5.1329           | $13 \cdot 505$      | 3.9809           | 0.3582            | 1.1707           | 68.912                 | -0.1426         |
| 0.95            | 8.1036           | 10.665              | 2.1041           | 0.3611            | 1.1743           | 68·153                 | 0.0000          |
| 0.98            | $16 \cdot 8180$  | 8.850               | 1.2883           | 0.4               | 1.2551           | $59 \cdot 124$         | $2 \cdot 1327$  |
|                 | $\theta_s$       | $= 10^{\circ}$      |                  | 0.45              | 1.4062           | 50.476                 | 3.8682          |
| 0.3765          | 1.0535           | 77.311              | - 0.8455         | 0.2               | 1.5881           | 44.067                 | $4 \cdot 2223$  |
| 0.3810          | 1.0576           | 75.347              | 0.0000           | 0.55              | 1.7996           | 39.089                 | 3.9217          |
| 0.4             | 1.0948           | 67.957              | 9.0936           | 0.6               | 2.0472           | 35.079                 | 3.4297          |
| 0.4082          | 1.1190           | 64.899              | 15.9125          | 0.65              | 2.3438           | 31.756                 | 2.9338          |
| 0.45            | 1.2398           | 54.713              | 42.7685          | 0.7               | 2.7122           | 28.939                 | 2.4909          |
| 0.5             | 1.4109           | 45.976              | 49.7619          | 0.75              | 3.1947           | 26.502                 | 2.1100          |
| 0.55            | 1.6049           | 39.445              | 39.7939          | 0.85              | 3.8809           | 24.300                 | 1.7717          |
| 0.6             | 1.8271           | 34.238              | 27.6345          | 0.85              | 5.0080           | 22.430                 | 1.94940         |
| 0.65            | 2.0872           | 29.915              | 18.1499          | 0.9               | 1.0190           | 20.033                 | 1.7471          |
| 0.7             | 2.4009           | 26.220              | 11.8199          |                   | θ.               | $= 20^{\circ}$         |                 |
| 0.75            | 2.7900           | 22.985              | 7.7432           | 0.3               | 1.2728           | 79.220                 | -1.1975         |
| 0.85            | J-3231<br>4.0051 | 20'093<br>17.400    | 3.4606<br>9.1019 | 0.356             | $1 \cdot 2271$   | 66.747                 | -0.0045         |
| 0.00            | 5-4526           | 14.966              | 2.3434           | 0.3561            | 1.2259           | 66.670                 | 0.0000          |
| 0.95            | 9.1471           | 12.541              | 1.5017           | 0.4               | 1.3191           | 57.697                 | 1.5749          |
| 0.98            | 19.2181          | 11.048              | 1.0663           | 0.4082            | 1.3452           | 56.068                 | 1.8450          |
|                 | <u>ــــــ</u>    | 10 50               |                  | 0.45              | 1.4737           | 50.008                 | 2.6155          |
|                 | U <sub>s</sub> = | $= 12.9^{\circ}$    |                  | 0.5               | 1.6609           | 44.205                 | 2.8858          |
| 0.3             | 1.3168           | 86.723              | -0.8426          | 0.55              | 1.8806           | 39.658                 | 2.7762          |
| 0.3738          | 1.1400           | 72.409              | 0.0249           | 0.6               | 2.1404           | 35.980                 | 2.5168          |
| 0.4             | 1.1429           | 04.103              | <b>5·1224</b>    | 0.02              | 2.4999           | 32.928                 | z 2497          |

TABLE 1

\* The angles  $\theta_w$  are given in degrees.

| $u_0(\theta_s)$ |                |                  |                 | $\underline{u_0(\theta_s)}$ |                  |                      |                 |
|-----------------|----------------|------------------|-----------------|-----------------------------|------------------|----------------------|-----------------|
| $q_m$           | M              | $\theta_{w}$     | $R/\mathscr{R}$ | $q_m$                       | M                | $\theta_{w}$         | $R/\mathscr{R}$ |
|                 | A              | 20º ( acm t )    |                 |                             | A _              | $95^{\circ}$ (cont.) |                 |
| 0 7             | $v_s =$        | 20 (0010.)       | 1.0750          | 0.000                       |                  | 00 (0000.)           | 0.0000          |
| 0.7             | 2.8531         | 30.339           | 1.9759          | 0.3395                      | 1.7105           | 64.316               | 0.0000          |
| 0.10            | 3.3802         | 28.100           | 1-7340          | 0.30                        | 1.7309           | 03.009               | 0.1320          |
| 0.05            | 4.1742         | 20.141           | 1.9129          | 0.4009                      | 1.0115           | 01.048<br>E8.858     | 0.6745          |
| 0.0             | 0.4920         | 24.391           | 1.1905          | 0.45                        | 9.0975           | 59.918 -             | 0.0740          |
| 0.9             | 9.0230         | 22.801           | 1-1005          | 0.40                        | 2.2622           | 40.758               | 1.0119          |
|                 | $\theta_{s}$   | $= 22.5^{\circ}$ |                 | 0.55                        | 2.3033           | 48.957               | 1.0635          |
| 0.3             | 1.3014         | $76 \cdot 482$   | -1.1329         | 0.6                         | 3.2112           | 44.653               | 1.0673          |
| 0.3518          | 1.2840         | 65.588           | 0.0000          | 0.65                        | 3.9340           | 42.729               | 1.0473          |
| 0.3520          | 1.2856         | 65.596           | 0.0057          | 0.7                         | $5 \cdot 2059$   | 41.122               | 1.0160          |
| 0.4             | 1.3888         | 56.913           | 1.2413          | 0.75                        | 8.6893           | 39.706               | 0.9780          |
| 0.4082          | 1.4157         | 55.363           | $1 \cdot 4234$  | 0.78                        | 24.7546          | 38.964               | 0.8756          |
| 0.45            | 1.5479         | $49 \cdot 920$   | 1.9532          |                             |                  | 400                  |                 |
| 0.5             | 1.7418         | 44.643           | $2 \cdot 1769$  |                             | $\theta_s$       | $= 40^{\circ}$       |                 |
| 0.55            | 1.9718         | 40.476           | 2.1487          | 0.3                         | 1.9533           | 69.453               | -0.4848         |
| 0.6             | $2 \cdot 2471$ | 37.092           | 2.0138          | 0.3374                      | 1.9938           | 65.177               | -0.0102         |
| 0.65            | 2.5860         | $34 \cdot 279$   | 1.8415          | 0.3381                      | 1.9982           | 65.147               | 0.0000          |
| 0.7             | 3.0229         | 31.894           | 1.6881          | 0.34                        | 1.9993           | 64.902               | 0.0133          |
| 0.75            | 3.6274         | 29.837           | 1.4817          | 0.35                        | 2.0235           | 63.863               | 0.1217          |
| 0.8             | 4.5707         | 28.036           | 1.3309          | 0.4000                      | 2.2027           | 59.282               | 0.5052          |
| 0.82            | 16-7401        | 25.002           | 1.0401          | 0.45                        | 2.2403           | 58.527               | 0.0000          |
|                 | $\theta_s$     | $= 25^{\circ}$   |                 | 0.40                        | 2.4/12           | 50.000               | 0.0455          |
| 0.3             | 1.3484         | 74.181           | -1.0138         | 0.55                        | 2.8441           | 52.047               | 0.8499          |
| 0.3478          | 1.3487         | 64.913           | - 0.0089        | 0.00                        | 0.0102<br>1.9117 | 20.238<br>18.900     | 0.0919          |
| 0.3481          | 1.3493         | 64.841           | 0.0000          | 0.65                        | 5.9903           | 40.299               | 0.0901          |
| 0.3489          | 1.3504         | 64.704           | 0.0174          | 0.00                        | 12.8630          | 45,186               | 0.9201          |
| 0.35            | 1.3534         | 64.550           | 0.0427          | 0.711                       | 27.3166          | 44.907               | 0.8763          |
| 0.4             | 1.4653         | 56.367           | 1.0250          | 0 /11                       | 27 0100          | 11001                | 0 0100          |
| 0.4082          | 1.4931         | 55.066           | 1.1591          |                             | $\theta_s$       | = 45°                |                 |
| <b>0·45</b>     | 1.6299         | 50.146           | 1.5576          | 0.3                         | 2.3720           | 70.058               | -0.4205         |
| 0.5             | 1.8325         | 45.328           | 1.7465          | 0.32                        | 2.3910           | <b>68</b> .077       | -0.1833         |
| 0.55            | 2.0757         | 41.497           | 1.7606          | 0.3383                      | $2 \cdot 4336$   | 66·381               | 0.0000          |
| 0.6             | 2.3712         | 38.374           | 1.6849          | 0.34                        | 2.4387           | 66.228               | 0.0154          |
| 0.65            | 2.7422         | 35.775           | 1.5724          | 0.35                        | 2.4718           | 65.354               | 0.1017          |
| 0.7             | 3.2335         | 33.571           | 1.4482          | 0.4                         | 2.7233           | 61.487               | 0.4271          |
| 0.75            | 3.9442         | 31.698           | 1.3211          | 0.4082                      | 2.7866           | 60.847               | 0.4709          |
| 0.8             | 5.1439         | 30.018           | 1.2101          | 0.45                        | 3.1279           | 58.360               | 0.6220          |
| 0.85            | 8.1165         | 28.5546          | 1.0877          | 0.5                         | 3.7626           | 55.827               | 0.7311          |
| 0.8             | 27.9004        | 27.020           | 0.8890          | 0.00                        | 4.9944           | 03·101               | 0.0941          |
|                 | $\theta_s$     | $= 30^{\circ}$   |                 | 0.699                       | 1.1997           | 52.040               | 0.8640          |
| 0.3             | 1.4857         | 71.094           | -0.7675         | 0.035                       | 20.2000          | 51.075               | 0.9040          |
| 0.3427          | 1.5058         | 64.163           | 0.0000          |                             | θ,               | $= 50^{\circ}$       |                 |
| 0.35            | 1.5180         | <b>63</b> ·068   | 0.1194          | 0.3                         | 3.1392           | $71 \cdot 261$       | -0.3833         |
| 0.4             | 1.6446         | 56.477           | 0.7645          | 0.32                        | 3.1735           | 69.593               | -0.1723         |
| 0.4082          | 1.6750         | 55.409           | 0.8509          | 0.3392                      | $3 \cdot 2539$   | 68.078               | -0.0015         |
| 0.45            | 1.8259         | 51.326           | 1.1179          | 0.3396                      | 3.2546           | 68.067               | 0.0000          |
| 0.5             | 2.0546         | 47.265           | 1.2721          | 0.35                        | 3.3154           | 67.302               | 0.0780          |
| 0.55            | 2.3390         | 44.050           | 1.3128          | 0.4                         | 3.7916           | 64.038               | 0.3675          |
| 0.6             | 2.6971         | 41.325           | 1.2929          | 0.4082                      | 3.9220           | $63 \cdot 497$       | 0.4078          |
| 0.65            | 3.1745         | 39.093           | 1.2410          | 0.45                        | 4.7239           | 61.385               | 0.5445          |
| 0.7             | 3.8645         | 37.202           | 1.1786          | 0.5                         | 7.0019           | 59.225               | 0.6520          |
| 0.75            | 5.0277         | 35.579           | 1.1085          | 0.54                        | $21 \cdot 4992$  | 57.782               | 0.8512          |
| 0.8             | 7.8707         | 34.171           | 1.0384          |                             | A                | = 55°                |                 |
| v·835           | 24•0388        | 32.291           | 0.9803          | 0.3                         | 5.4916           | 79,001               | 0.2899          |
|                 | θ.             | $= 35^{\circ}$   |                 | 0.25                        | 6.2972           | 60.522               |                 |
| 0.3             | 1.6707         | 69-681           | -0.5928         | 0.35                        | 9.8838           | 66-850               | 0.3202          |
| 0.3391          | 1.7099         | 64.361           | - 0.0047        | 0.4082                      | 12.0445          | 66-394               | 0.3573          |
| 0.0001          | 1,000          | 01 001           |                 | 1 (acm+)                    | 0110             | 00 001               | 0.0010          |
|                 |                |                  | LABLE           | I (cont.)                   |                  |                      |                 |

616